

Beyond the APS Detector Pool: Detector Systems Evaluation & Characterization

Antonino Miceli
Optics & Detector Group/XSD
2010 APS Users Meeting
Beamline 2.0 Workshop
May 5, 2010

Outline

- Overview of APS Detector Pool
- Detector Test Facilities
 - Optics Lab
 - X-ray Tube
 - ODG Beamline (6-BM)
- Examples of Detectors Characterization
- Exploring New Commercial Detectors

Optics & Detectors Group in XSD

- Led by Patricia Fernandez
- Detector Side consists of an R&D and Detector/Equipment Pool section
- Detector Staffing: 4 Engineers, 2 Physicists, 2 Scientific Associates, 2 Technicians
 + 2 new hires!

APS Detector/Equipment Pool

- Provide support for ~ 50 detector systems for temporary loan
 - ~ 300 requests per year.
- We are the outlet for new detectors for the beamlines.
- Centralized source for detector information.
- Characterization of current and new detectors.
 - New Optics and Detectors Beamline
- Detector-driven technique development
 - "Pushing detectors to the limit!"

Major Detectors/Equipment

- GE & PE Amorphous Silicon Flat Panel (2) (>100%)
- Pilatus 100K Pixel Array Detector (2) (>100%)
- Mar 345 Image Plate (2) (100%)
- Mar 165 CCD (3) (100%)
 - Frameshift/Kinematics Mode
- Bruker 6500 CCD Detector (1)
- PI CoolSnap & Zeiss/Mitutoyo Optics (2) (75%)
 - Including scintillators
- Other Microscopy CCDs: Sarnoff, Prosilica, etc.
- APS-in-house Avalanche Photodiodes (APDs)
- Ketek Silicon Drift Diode (6)
- SII Vortex Single-element SDD (4) (75%)
- SII 4-element Vortex SDD (2) (80%)
- Single & multi element Germanium (3)

4-element Vortex SDD

GE a-Si Flat Panel

Pilatus 100K

X-ray Tube Test Facilities

- Copper X-ray tube in 401-L0111
 - Testing of FCCD (John Weizeorick)
 - "Narrow-Beam X-Ray Tests of CCD Edge Response" (submitted 2010)
 - S. Kuhlman et. al. (HEP/ANL)
 - Support by Beyer, Gades, Miceli, and Spence

Evidence of E-field distortions at CCD edges!!!

- Phillips High-Energy X-Ray Tube (W anode)
 - Currently being commissioned.
 - Flat field Calibration of large area detectors (e.g., GE/PE flat panel)
 - Need to develop testing protocols!!

Optics Test Stand

- Visible light testing offline
 - Comparison of microscope optics, tube lens, camera
- The long X95 trail is dedicated to testing optics
- Motors for resolution target (xyz) are controlled by the VME EPICS IOC
- Illumination is controlled by DAC in VME crate
- Detailed analysis of Mitutoyo's, Infinitube's, Prosilica's in progress

Optical Rail

Integrating Sphere with Green Filter

Resolution Test Target

New Optics & Detectors Beamline at APS (6-BM)

- Will enable systematic and careful detector characterization and recalibration
 - For example, energy-dependent threshold re-calibration of Pilatus detectors
 - Flat-fields for various large area detectors (e.g., GE and PE a-Si Detectors)
 - Scintillator testing can only be done at a beamline!!!

Will enable testing with synchrotron timing structure

- Dead-time corrections with various bunch structures (e.g., hybrid singlet)
 - e.g., Walko et al JSR 2009 & 2010→ Empirical Deadtime corrections of photon counting (point detectors & Pilatus)
- Will enable detector-driven technique development
 - Novel uses of detectors.
- Need to develop testing protocols!!

Empirical Dead-time Corrections for Synchrotrons Walko, Arms & Landahl JSR 2009

- Should you care if its hybrid single mode??
- Yes, if you are using a counting detectors!!!
 - Can your detector separate bunches? Nal vs. YAP vs. APD...

Faster Detector

 Proper dead-time correction depends critically on detector speed and synchrotron fill pattern!!!!

Dead-time Corrections for Pilatus in APS timing modes...

Pilatus deadtime measurements for Pilatus in progress (Walko, Miceli, Kastengren at 7-BM)

Example of Detector Testing & Analysis at 1-ID & 6-ID

(A. Miceli, J. Lee, D. Robinson)

Comparison of GE & PerkinElmer Flat Panel Detectors

Broadband energy response (30-130keV)

Simple Energy-Dependence Model for Indirect Detection Area Detectors

$$f(E, e_{\text{scintillator}}) = ((E \times 1000) / 2.18eV) \times \epsilon_{\text{scintillator}} \times \mu_{CsI}(E)$$

$$\text{light yield}$$

$$\text{light yield}$$

$$\text{x-ray absorption probability in CsI}$$

- 1. CsI(Tl) emits at 570 nm (2.18eV) (i.e., light yield)
- $2.\epsilon_{scintillator}$ composed of:
 - Fraction of absorbed energy transferred to optical photons
 - Fraction of optical photons that actually get to photodiode
 Might be energy dependent.... How deep does x-ray interact in CsI?
 - Optical photon to electron conversion (QE of photon diodes)
 - Electron to ADU gain (4400 electrons/ADU)
 - Main assumption: $\epsilon_{scintillator}$ is independent of energy!!!!!!!
 - > Might be ok assumption, though......

Energy-dependence Response of GE a-Si Flat Panel

Miceli & Lee

Energy Response of marCCD

Data Corrections: *Energy of the Compton scattering is Q-dependent* (e.g., PDF measurements) (Chupas et al)

Exploring New Commercial Detectors

- There are many commercial detectors that could be useful for the APS.
 - Need to explore, evaluate, and test these detectors at the APS!
 - a-Se detectors from medical mammography (e.g., ANRAD, Hologic)
 - CMOS flat detectors (Hamamatsu, etc)
 - High-energy/high-resolution detectors from the dental imaging market.
- Working with other labs (e.g., Peter Siddons with Maia detector?)
 and companies to adept/modify detectors for the APS.
 - Not detector research!
 - Semi-commercial detectors.
 - "Detector Systems Engineering"
 - Custom packaging, readout electronics, software
 - Find companies to collaborate with via SBIRs.

This is a full time job!!!

Conclusions

- APS Detector Pool overview
- Careful and detailed detector characterization
- Bring more non-tradition commercial detector to APS.
 - Evaluate performance & characterization protocol.
 - Integrate into the beamline with software (See Mark's Talk)
- Better name for the Detector Pool?
 - "APS Detector Systems"